Proteomic profiling of the phosphoproteins in the rat thalamus, hippocampus and frontal lobe after propofol anesthesia
نویسندگان
چکیده
BACKGROUND Propofol is a safe and effective intravenous anesthetic that is widely used for the induction and maintenance of anesthesia during surgery. However, the mechanism by which propofol exerts its anesthetic effect remains unknown. The rapid onset of phosphorylation modifications coincides with that of propofol anesthesia. METHODS Propofol-anesthetized rat models were built and phosphorylated proteins in the thalamus, hippocampus and frontal lobe were enriched the to analyze the changes in these phosphoproteins after propofol anesthesia. RESULTS Sixteen of these phosphoprotein spots were successfully identified using MALDI-TOF MS and a subsequent comparative sequence search in the Mascot database. Of these proteins, keratin 18 and the tubulin 2c chain are cytoskeletal proteins; keratin 18 and gelsolin are relevant to alcohol drowsiness. Based on Western blot analysis, we also confirmed that the phosphorylation of these proteins is directly induced by propofol, indicating that propofol anesthesia may be relevant to cytoskeletal proteins and alcohol drowsiness. CONCLUSIONS These identified propofol-induced phosphorylations of proteins provide meaningful contributions for further studying the anesthetic mechanism of propofol.
منابع مشابه
[GAT-1 and GAD65 mRNA expressions in different brain regions in dogs at brain propofol uptake equilibrium].
OBJECTIVE To investigate the expressions of gamma aminobutyric acid transporter 1 (GAT-1) and glutamate decarboxylase 65 (GAD65) mRNA in different brain regions at brain propofol uptake equilibrium in dogs. METHODS Eighteen 12- to 18-month-old healthy hybrid dogs were randomized equally into control group (group C), low dose group (group L), and high dose group (group H). In groups L and H, ...
متن کاملThe action sites of propofol in the normal human brain revealed by functional magnetic resonance imaging.
Propofol has been used for many years but its functional target in the intact brain remains unclear. In the present study, we used functional magnetic resonance imaging to demonstrate blood oxygen level dependence signal changes in the normal human brain during propofol anesthesia and explored the possible action targets of propofol. Ten healthy subjects were enrolled in two experimental sessio...
متن کاملPropofol and ketamine-induced anesthetic depth-dependent decrease of CaMKII phosphorylation levels in rat hippocampus and cortex.
Ca/calmodulin-dependent protein kinase II (CaMKII) activation through autophosphorylation at threonine 286 was involved in the modulation of neuronal excitability and neurotransmission. Both propofol and ketamine may affect the intracellular Ca levels through N-methyl-D-aspartate receptors or voltage-dependent Ca channels, but they have different mechanisms in general anesthesia. The purpose of...
متن کاملIn vivo effects of propofol on acetylcholine release from the frontal cortex, hippocampus and striatum studied by intracerebral microdialysis in freely moving rats.
Using in vivo microdialysis, we have investigated the effects of propofol on acetylcholine (ACh) release from various regions of the rat brain. Propofol 25 and 50 mg kg-1 i.p. decreased basal ACh release from the frontal cortex by 70% and 85%, respectively. Propofol 25 and 50 mg kg-1 i.p. decreased basal ACh release from the hippocampus by 47% and 72%, respectively. However, in rat striatum, pr...
متن کاملDepth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کامل